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Abstract—Dependency structures between modalities have
been utilized explicitly and implicitly in multimodal learning
to enhance classification performance, particularly when the
training samples are insufficient. Recent efforts have con-
centrated on developing mathematical frameworks utilizing
conditional dependency structures, but the non-asymptotic
relations between the training sample size and various struc-
tures are not sufficiently addressed. To address this issue,
we propose a mathematical framework that can be utilized
to characterize conditional dependency structures in analytic
ways. It provides an explicit description of the sample size
in learning various structures in a non-asymptotic regime.
Additionally, it demonstrates how task complexity and a fitness
evaluation of conditional dependence structures affect the
results. Furthermore, we develop an autonomously updated
coefficient algorithm auto-CODES based on the theoretical
framework and conduct experiments on multimodal emotion
recognition tasks using the MELD dataset. The experimental
results validate our theory and show the effectiveness of the
proposed algorithm.

I. INTRODUCTION

Multimodal learning is an active research area in ma-
chine learning with wide applications in audio-visual speech
recognition (AVSR) [1], emotion recognition [2], and in-
formation retrieval [3], etc. It aims at jointly extracting
information and learning knowledge from different cate-
gories of data, such as texts, audio, and images [4], to
gain better and more robust results. Treating each modality
as a random variable, training the joint distribution of
multiple modalities often demands a larger sample size,
compared to the single modality cases. Thus, a critical
issue is to exploit heterogeneous dependency structures
across modalities, such that the label information can be
effectively extracted for classification, especially when the
number of training samples is insufficient. Addressing this
issue, a mathematical framework has been proposed in [5]
using the minimax principle. Especially, as illustrated in
Fig. 1, a conditional dependency structure, in which the
modalities and the label form a Markov chain, has been
emphasized. Based on the framework, the authors in [5]
show that the optimal estimator for the joint multimodal
distribution can be approximated by the linear combination
of two estimators considering the general structure and the
conditional dependency structure, respectively. Note that the
conclusion is given under two constraints: i) the sample size
is under a certain regime, and ii) the true structure across
multiple modalities is close to the conditional dependency
structure. However, the actual scenes may not satisfy those
constraints.

In this work, we propose a non-asymptotic framework
to characterize the dependency structures in multimodal
learning, based on the framework in [5]. We first consider
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Fig. 1. Two dependency structures of modalities X1, X2 and labels
Y , where the edges indicate dependencies. The left figure represents the
general dependency structure, and the right one describes the conditional
dependency X1 − Y − X2 where modalities are independent once their
label information Y is given.

the multiple modalities in discrete random variable cases to
give theoretical insights and interpretations. Specially, we
adopt the joint distribution estimator as a linear combina-
tion of the mentioned estimators considering two different
dependency structures with a combing coefficient to be
determined through a testing loss. The proposed testing
loss considers the average estimating performance of the
linearly combined estimator under a given training sample
size. By minimizing the testing loss, the optimal coefficient
can be expressed analytically. Moreover, based on the
expressions, we conclude that this similarity measurement
is inversely proportional to the training sample size and the
distance between two distributions representing two consid-
ered structures. In addition, it is proportional to the model
complexity which characterizes the number of parameters
used to represent the model. The results hold true for all
numbers of sample sizes and the coefficient itself can be
viewed as a similarity measurement to characterize how
close the true structure is to the conditional dependency
one.

On the other hand, we extend our analyses from discrete
random variables to continuous ones by exploiting paramet-
ric models. Moreover, we develop a multimodal algorithm
to implement our theoretical conclusions, based on the Soft-
HGR multimodal algorithm [6]. The proposed algorithm
can update the combining coefficient autonomously using
the learned features from different modalities. In addition,
we conduct experiments on multimodal emotion recognition
tasks with a challenging dataset MELD, using the proposed
autonomous updated coefficient on dependency structures
(auto-CODES) algorithm. Experimental results demonstrate
that the proposed auto-CODES algorithm outperforms ex-
isting approaches, and validates our theory that the optimal
coefficient is inversely proportional to the training sample
size.



II. PROBLEM FORMULATION AND ANALYSIS

A. Linearly Combined Estimator

Let random variables X1, X2 and Y denote two modali-
ties and their corresponding label over finite alphabets X1,
X2 and Y , respectively. Then, a multimodal dataset with n

sample tuples D ≜ {(x(i)
1 , x

(i)
2 , y(i))}ni=1 are generated in an

independent, identically distributed (i.i.d.) manner from the
true joint distribution PX1X2Y , where PX1X2Y (x1, x2, y) >
0 for all entries. Specifically, we consider two different esti-
mators to approximate the joint distribution PX1X2Y : (i) the
empirical joint distribution P̂X1X2Y , and (ii) the empirical
Markov-structured distribution P̂

(M)
X1X2Y

characterizing the
conditional dependency structure X1 − Y −X2, where

P̂X1X2Y (x1, x2, y) ≜

1

n

n∑
i=1

1{x(i)
1 = x1}1{x(i)

2 = x2}1{y(i) = y}, (1a)

P̂
(M)
X1X2Y

(x1, x2, y) ≜ P̂X1|Y (x1|y)P̂X2|Y (x2|y)P̂Y (y),
(1b)

and where 1{·} denotes the indicator function, P̂Y denotes
the marginal empirical distribution of labels Y and P (M)

denotes PX1|Y PX2|Y PY . For simplicity, we consider the
case where the label distribution has been learned well, i.e.,
P̂Y (y) = PY (y), for y ∈ Y .

We aim to design P̃X1X2Y to estimate the true joint
distribution PX1X2Y . Specifically, the estimator is a linear
combination of the two aforementioned estimators, i.e.,

P̃X1X2Y ≜ (1− α) · P̂X1X2Y + α · P̂ (M)
X1X2Y

(2)

where the coefficient α ∈ [0, 1] is the parameter to be
designed.

B. Optimal Combination Coefficient

To measure the performance of estimator (2), we propose
a testing loss based on the referenced χ2-divergence, which
is defined as follows. 1

Definition 1. For discrete random variable Z over finite
alphabet Z , and its distributions PZ and QZ , with reference
distribution RZ , the referenced χ2-divergence between PZ

and QZ is defined as:

χ2
RZ

(PZ , QZ) ≜
∑
z∈Z

(PZ(z)−QZ(z))
2

RZ(z)
, (3)

where we denote χ2(PZ , QZ) ≜ χ2
PZ

(PZ , QZ), which
corresponds to the Pearson χ2-divergence.

Based on the referenced χ2-divergence, we define the
testing loss as the average divergence between the depen-
dency estimator (2) and the true joint distribution under the
fixed training sample size n.

1Conventionally, such performance is conventionally computed by log-
arithm loss. However, in our setting, it will be ill-defined when some
(x1, x2, y) tuple is missing in training samples. By that time, we have
P̃X1X2Y (x1, x2, y) = 0 while PX1X2Y (x1, x2, y) > 0, which would
bring the logarithm loss to infinite.

Definition 2. For estimator P̃X1X2Y with coefficient α and
the corresponding true distribution PX1X2Y , the testing loss
and the optimal coefficient α∗ are defined as:

L̃dep(α) ≜ E
[
χ2(PX1X2Y , P̃X1X2Y )

]
, (4)

α∗ ≜ argmin
α∈[0,1]

L̃dep(α), (5)

where the expectation is taken over all n i.i.d. samples
generated from the true distribution.

Then, we have the following characterization of our
proposed testing loss (4) over the linearly combined depen-
dency estimator (2) and the optimal combining coefficient
α∗ (5).

Theorem 3. The testing loss (4) can be expressed as:

L̃dep(α) =

(
1

n
C +

1

n
V + χ2(PX1X2Y , P

(M)
X1X2Y

)

)
· α2

− 2

n
C · α+

1

n
(|X1||X2||Y| − 1), (6)

and the optimal coefficient α∗ to minimize the χ2-divergence
dependency loss (4) can be given as:

α∗ =
1
nC

χ2(PX1X2Y , P
(M)
X1X2Y

) + 1
nC + 1

nV
, (7)

where

C ≜ |Y| ·
[
|X1||X2| − (|X1|+ |X2|)

]
+ 1 + an, (8)

V ≜ −6 · χ2(PX1X2Y , P
(M)
X1X2Y

) + |Y|(|X1|+ |X2|)− 2

+ 2
∑
x2,y

χ2(PX1|X2Y , PX1|Y )

+ 2
∑
x1,y

χ2(PX2|X1Y , PX2|Y ) + bn, (9)

where an and bn are of the order O( 1n ), which will go to
constants when n goes to infinity.

By considering the conditional dependency structure and
tuning the coefficient α, the improvement from the unbiased
estimator (1a) to the optimal dependency estimator can be
calculated through the differences in their corresponding
testing losses.

Corollary 4. The improvement of considering the optimal
coefficient α∗ can be given as:

L̃dep(0)− L̃dep(α
∗)

=
1

n
· C2

C + V + n · χ2(PX1X2Y , P
(M)
X1X2Y

)
, (10)

where parameters C and V are defined in Theorem 3.

From (7), we can notice that the optimal combining
coefficient α∗ is determined by three major factors: (i) the
training sample size n, (ii) the fitness of the conditional
dependency structure to describe the true underlying distri-
bution, measured by χ2(PX1X2Y , P

(M)
X1X2Y

) and terms in the
parameter V , and (iii) the task complexity C, characterized
by the number of parameters needed to estimate the joint
distribution. The last characterization comes from the fact
that when the task is to learn all the entries of the true



distribution, the number of parameters required corresponds
to the cardinality of the sample space.

Most importantly, based on (7), we show that the optimal
coefficient α∗ is inversely proportional to the number of
training samples and the fitness measure of the conditional
dependency structure to estimate the true one. In addition, it
is proportional to the task complexity measured by the num-
ber of model parameters. With the optimal coefficient α∗,
we obtain the optimal dependency estimator P̃ ∗

X1X2Y
, which

represents the most appropriate dependency structure to
approximate the true joint distribution. Our work generalizes
the conclusions in [5] and show the explicit relation between
training sample size and different dependency structures in
a non-asymptotic regime.

In addition, to better understand Theorem 3 and Corol-
lary 4, we discuss two special cases as follows.
Case 1: When the true dependency structure is Markovian,
i.e. X1 − Y − X2, the optimal coefficient will becomes
1 − V (C + V )−1, which is nearly 1 − |X1|−1 − |X2|−1.
Since the cardinality terms |X1| and |X2| are usually large,
the optimal coefficient α∗ is quite close to 1, representing
that the true joint distribution should be close to a Markov-
structured conditional distribution 2, the improvement from
the unbiased estimator to the optimal dependency estimator
is also relatively large.
Case 2: When the number of training samples is relatively
small and insufficient to learn a complex model, the optimal
coefficient α∗ will be close to 1, which means that the
model behaves as a “near Markov" one and its performance
will improve significantly by considering the conditional
dependency structure. Such insights are not well captured by
existing approaches, and our results essentially provide the
optimal characterization of the combing coefficient among
different dependency structures adjusted by the training
sample size, the fitness measure of the conditional depen-
dency structure, and the task complexity.

Last but not least, the χ2-divergence dependency loss (4)
can be interpreted as a bias-variance trade-off tuned by the
coefficient α, and the optimal bias-variance trade-off can
be achieved when the χ2-divergence dependency loss is
minimized. This unique interpretation is defined as:

L̃dep(α) =
1

n

(
Cα2 + V α2 + 2Cα+ |X1||X2||Y| − 1

)
︸ ︷︷ ︸

variance term(s)

+ α2χ2(PX1X2Y , P
(M)
X1X2Y

)︸ ︷︷ ︸
bias term

(11)

The variance terms will vanish as the number of training
samples increases. Besides, the bias term characterizes the
cost of utilizing the conditional dependency structure to
approximate the true distribution.

III. AUTO-CODES: AUTONOMOUS UPDATED
COEFFICIENT ON DEPENDENCY STRUCTURE

In this section, we propose an algorithm named au-
tonomous updated coefficient on dependency structures

2Due to the consideration of a limited number of training samples and
the assumption on the distribution of the label Y , it will not be strictly 1.

(auto-CODES) as a realization of our aforementioned the-
oretical framework. Specifically, we first extend our theory
from discrete to the continuous domain using representa-
tions in factorization form. Then, the expression of the
optimal coefficient α∗ is given by multimodal features, and
the objective loss function is designed as a linear combi-
nation of general and conditional dependency structures.
Finally, we give the proposed auto-CODES algorithm and
the discrimination rule using maximum a posterior (MAP).

A. Multimodal Representations in Factorization Form

To utilize our previously proposed mathematical frame-
work, we introduce a parameterized representation for mod-
eling the density function of the continuous data. The
parameterized model consists of two parts. In the first
part, there is an early fusion model to integrate multiple
modalities by concatenating their individual representation
once they are extracted from the dataset. Then, the con-
catenated feature will be fed into a deep neural network to
learn a joint representation f for those modalities. In the
second part, there is an embedding layer which is another
neural network that transforms the one-hot encoded labels
associated with modalities into a dense representation g.
During the training phase, the multimodal representation
f and their corresponding label representation g will be
trained in a joint manner.

Our framework considers an inference model P̃ (f ,g)
Y |X1X2

in
the following factorization form3, which is widely used in
natural language processing [7] and image recognition [8]:

P̃
(f ,g)
Y |X1X2

(y|x1, x2) ≜ PY (y)(1 + ⟨f(x1, x2), g(y)⟩). (12)

Analogous to the linearly combined dependency estima-
tor (2), we consider the linear combination of two types
of inference models, representing the general dependency
structure and conditional dependency structure respectively,
which is defined as:

Q
(α)
Y |X1X2

≜ (1− α)P̃
(f∗

0 ,g
∗
0 )

Y |X1X2
+ αP̃

(f∗
1 ,g

∗
1 )

Y |X1X2
(13)

(f∗
0 , g

∗
0) ≜ argmin

f0,g0

χ2
R

(
P̂X1X2Y , PX1X2

P̃
(f0,g0)
Y |X1X2

)
(14)

(f∗
1 , g

∗
1) ≜ argmin

f1,g1

χ2
R

(
P̂

(M)
X1X2Y

, PX1X2
P̃

(f1,g1)
Y |X1X2

)
, (15)

where the reference distribution R ≜ PX1X2PY .
Furthermore, we define the testing loss and the corre-

sponding optimal coefficient α∗ as

L̃(f ,g)
test (α) ≜ E

[
χ2
R

(
PX1X2Y , PX1X2

Q
(α)
Y |X1X2

)]
, (16)

α∗ ≜ argmin
α∈[0,1]

L̃(f ,g)
dep (α). (17)

B. Our Proposed Algorithm

Based on the linear estimator (13), the objective function
that we aim to optimize during the training phase can
be chosen as a linear combination of two referenced χ2-
divergences, which measures the distances between the

3Note that it can be negative in real applications. But we can also use it
to make discriminative decisions through the maximum a posterior (MAP)
rule.



learned distribution and distributions corresponding to two
different dependency structures:

L̃(α)
train(f , g) = (1− α)χ2

R

(
P̂X1X2Y , P̂X1X2

P̂
(f ,g)
Y |X1X2

)
+ αχ2

R

(
P̂

(M)
X1X2Y

, P̂X1X2
P̂

(f ,g)
Y |X1X2

)
(18)

According to the Soft-HGR multimodal algorithm estab-
lished in [6], [9], the objective (18) can be transformed into
the following loss function that can be computed by the
multimodal and label features (f , g):

L̃(α)
train(f , g) = (1− α)L(f , g) + αL(M)(f , g), (19)

L(f , g) = 1

n− 1

n∑
i=1

fT(x
(i)
1 , x

(i)
2 )g(y(i))

− 1

2
tr(cov(f) cov(g)) (20)

L(M)(f , g) =

m∑
j=1

P̂Y (j)
( 1

nj − 1

nj∑
i=1

fT(x
(i,j)
1 , x

(i,j)
2 )g(j)

− 1

2
tr(cov(fj) cov(g))

)
, (21)

where P̂Y (j) =
∑n

i=1 1{y(i) = j}, j = 1, . . . ,m,
f(x

(i)
1 , x

(i)
2 ) is the extracted feature representation of the

i-th sample (x
(i)
1 , x

(i)
2 , y(i)), g(i) is the embedding for label

i.
In (19), cov(f ), cov(g) and P̂Y (j) can be computed from

the data.

cov(f)← 1

n− 1

n∑
i=1

f(x
(i)
1 , . . . , x

(i)
k )fT(x

(i)
1 , . . . , x

(i)
k ),

cov(g)← 1

n− 1

n∑
i=1

g(y(i))gT(y(i)).

In (21), when calculating L(M)(f , g) which represents
the loss for the conditional dependency structure, it needs
a permutation on training samples’ all modalities within
the subset of the same label. We denote the subset of
training samples with label j ∈ {1, . . . ,m} as Dj =

{(x(i,j)
1 , x

(i,j)
2 )}dj

i=1, where dj is the number of samples
whose label is j in the original dataset D. Entry x

(i,j)
t is ran-

domly chosen from Dt, t = 1, . . . ,m, and nj =
∏m

t=1 dt.
Then cov(fj) can be approximated through: cov(fj) ←

1
nj−1

∑nj

t=1 f(x
(t,j)
1 , x

(t,j)
2 )fT(x

(t,j)
1 , x

(t,j)
2 ).

Based on the above analysis, our auto-CODES algorithm
can be implemented as an iteration of two main optimiza-
tions: (i) the optimization of coefficient α for given (f , g)
by minimizing the χ2-divergence dependency loss L̃dep(α)
(16); (ii) the optimization of feature pairs (f , g) for given
α to minimize the training loss (18) through the deep
neural network. The proposed auto-CODES algorithm is
summarized in Algorithm 1.

Finally, after training the auto-CODES algorithm for
multiple epochs and obtaining the optimal extracted features
f∗ and g∗, the classification of a newly observed sample

(xnew
1 , xnew

2 ) can be performed by the maximum a posterior
(MAP) decision rule:

ỹ(x1, x2)

= argmax
y∈Y

PY |X1X2
(y|xnew

1 , xnew
2 )

= argmax
y∈Y

PY (y)(1 + ⟨f∗(xnew
1 , xnew

2 ), g∗(y)⟩).

Algorithm 1 An Auto-updated Coefficient on Dependency
Structures (auto-CODES) Algorithm

Input: multimodal data samples {(x(i)
1 , x

(i)
2 , y(i))}ni=1

Initialize α∗ = 0
repeat

(f∗, g∗)← argminf ,g L̃
(α∗)
train(f , g)

α∗ ← argminα∈[0,1] L̃
(f∗,g∗)
test (α)

until α∗ converges
(f∗, g∗)← L̃(α∗)

train(f , g)
return f∗, g∗, α∗

IV. EXPERIMENTS

To demonstrate the effectiveness of our framework, we
apply our proposed auto-CODES algorithm to multimodal
emotion recognition in conversations using Multimodal
EmotionLines Dataset (MELD) [10] dataset. It is a chal-
lenging task in the field of multimodal learning which aims
to accurately predict the emotion label of each utterance in
a conversation using multiple modalities, including textual
and audio features. MELD is a multi-party dataset that
contains 13708 utterances and 1433 dialogues from the
popular TV series Friends. One notable feature of MELD
is that there are multiple speakers participating in the
dialogues. Each utterance in the dialogue is annotated in
two ways: (i) coarse-grained sentiment categories: positive,
neutral, and negative; (ii) fine-grained emotion labels: anger,
disgust, sadness, joy, neutral, surprise, and fear.

We use accuracy and weighted-average F1-score to eval-
uate model performance. All reported results are averaged
over 20 repeated experiments. To verify the effectiveness
of our proposed auto-CODES algorithm, we implement the
following loss functions for comparison.

To extract multimodal features f , we utilize Dia-
logueRNN [11] as our backbone network, which models
contextual information and speaker information in conver-
sations by employing three different Gated Recurrent Units
(GRUs) [12]: global GRU, speaker GRU, and emotion GRU.
The speaker-modeling nature of DialogueRNN makes it
suitable for multi-party dialogue scenarios in MELD, as it
is more effective in identifying the emotions of different
speakers.

As for the label representation g, we adopt a one-layer
Multi-layer Perceptron (MLP) to extract a dense represen-
tation for category labels, which is a simple model but
demonstrates to achieve satisfactory performances.

As mentioned in Section III-A, we employ early fusion
as the fusion mechanism, in which individual modalities
are concatenated after being extracted from the dataset
and then sent into a deep neural network to learn a joint
representation f .



TABLE 1
THE COMPARISON BETWEEN AUTO-CODES AND OTHER LOSS FUNCTIONS ON MELD DATASET IN DIFFERENT TRAINING SAMPLE SIZE SETTINGS.

Sample Size
(Dialogue Size) Metric Method

CE MaskedNLL Soft-HGR Focal auto-CODES

107 (10) accuracy 50.222±2.709 50.544±1.380 50.758±2.005 50.784±2.143 53.640±1.345
F1-score 40.099±2.296 42.147±2.269 43.649±1.999 43.998±2.227 47.206±1.179

302 (30) accuracy 51.272±1.467 52.084±0.990 52.655±1.421 53.036±1.576 55.943±0.925
F1-score 44.091±1.275 45.951±1.527 46.589±1.986 47.358±1.170 50.988±0.712

516 (50) accuracy 54.176±1.098 53.586±1.042 55.613±1.065 55.901±0.937 58.467±0.783
F1-score 49.397±1.100 48.537±0.934 50.509±1.700 50.107±0.776 52.138±0.872

1389 (150) accuracy 62.644±0.702 62.875±0.622 63.278±0.755 63.157±0.626 63.831±0.581
F1-score 61.657±0.783 61.649±0.589 62.616±0.801 62.457±0.578 62.884±0.699

11098 (1152)
(Full Training Set)

accuracy 64.995±0.436 65.364±0.517 65.900±0.386 66.482±0.485 67.203±0.443
F1-score 65.027±0.518 65.349±0.450 65.687±0.602 65.595±0.415 66.191±0.506

TABLE 2
THE RELATION BETWEEN THE OPTIMAL COEFFICIENT α∗ DERIVED BY

AUTO-CODES AND DIFFERENT SAMPLE SIZE n ON MELD.

MELD

Sample Size n α∗ n · α∗

107 0.0496 ± 0.0011 5.31
302 0.0172 ± 0.0009 5.19
516 0.0101 ± 0.0008 5.21

1389 0.0035 ± 0.0006 4.86
11098 0.0005 ± 0.0001 5.55

Hyperparameter Setting: The batch size is set to be 16,
the optimizer is Adam [13] with β1 = 0.9 and β2 = 0.99.
The number of training epochs is 100, the learning rate is
initialized with 10−4 and decays by 0.95 after every 10
epoch. To avoid overfitting, we apply Dropout [14] layers
with a dropout rate of 0.1 on all layers of DialogueRNN.
The dimensions of the extracted multimodal feature f and
label feature g are both designed to be 32. In addition, the
validation set is set to be 10% of the whole training data.
(1) Cross-Entropy Loss (CE): One of the most commonly-
used loss functions for classification tasks.
(2) Masked Negative Log Likelihood Loss
(MaskedNLL): Proposed by [11], a variant of NLL
loss which aims to deal with the zero padding problem by
masking padded samples.
(3) Soft Hirschfeld-Gebelein-Rényi Loss (Soft-HGR) [6]:
A correlation loss based on HGR maximal correlation
to effectively capture the common information shared by
different modalities without hard whitening constraints.
(4) Focal Loss [15]: It is designed to address the class
imbalance problem by adding a modulating term to the CE
loss in order to focus learning on hard misclassified samples.

First, the comparisons between our proposed auto-
CODES and baseline models on the MELD dataset under
different settings of training sample size are presented in
Table 1. The results demonstrate that auto-CODES consis-
tently outperforms existing methods in all training sample
size settings, which proves the effectiveness and superiority
of our proposed method at both small-scale and large-scale
regimes. In Table 1, the observed improvements of auto-
CODES over other baselines at small-scale sample size
settings are more significant than large-scale sample size
scenarios. From the dialogue size of 10 to 50, auto-CODES

gains average relative improvements of 5.23% on accuracy
and 6.06% on the F1-score against the second-best baseline
model. However, for larger dialogue sizes ranging from 150
to 1152, the improvements of auto-CODES over baseline
methods on average are 0.88% and 0.43% on accuracy
and F1-score metrics, respectively. This phenomenon may
be attributed to the fact that when the training dataset
size is relatively large, the improvement brought by our
method will become less noticeable compared with small-
scale scenarios, as illustrated in Corollary 4.

Moreover, we investigate the interplay between the opti-
mal coefficient α∗ and different numbers of training samples
n. As shown in the table Table 2, n · α∗ is approximately
a constant value at all training sample size settings, with
averages of 5.18. In other words, the optimal coefficient α∗

is nearly inversely proportional to n which validates our
theoretical result.

V. CONCLUSION

In this paper, we propose a new theoretical framework
to analytically characterize the explicit and exact relation
between the sample size with conditional dependency struc-
tures in multimodal learning in a non-asymptotic regime.
Moreover, we propose a weighted training algorithm, auto-
CODES, based on the theoretical framework. It can itera-
tively update the coefficient on different dependency struc-
tures based on the evolving modalities’ features. The ef-
fectiveness of auto-CODES is further corroborated through
multimodal emotion recognition experiments on the MELD
dataset with promising results.
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